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Abstract
Pericytes are cells in the blood–brain barrier (BBB) that degenerate in Alzheimer’s disease
(AD), a neurodegenerative disorder characterized by early neurovascular dysfunction,
elevation of amyloid β-peptide (Aβ), tau pathology and neuronal loss, leading to progressive
cognitive decline and dementia. Pericytes are uniquely positioned within the neurovascular
unit between endothelial cells of brain capillaries, astrocytes and neurons. Recent studies
have shown that pericytes regulate key neurovascular functions including BBB formation
and maintenance, vascular stability and angioarchitecture, regulation of capillary blood flow,
and clearance of toxic cellular by-products necessary for normal functioning of the central
nervous system (CNS). Here, we review the concept of the neurovascular unit and
neurovascular functions of CNS pericytes. Next, we discuss vascular contributions to AD
and review new roles of pericytes in the pathogenesis of AD such as vascular-mediated
Aβ-independent neurodegeneration, regulation of Aβ clearance and contributions to tau
pathology, neuronal loss and cognitive decline. We conclude that future studies should focus
on molecular mechanisms and pathways underlying aberrant signal transduction between
pericytes and its neighboring cells within the neurovascular unit, that is, endothelial cells,
astrocytes and neurons, which could represent potential therapeutic targets to control
pericyte degeneration in AD and the resulting secondary vascular and neuronal degeneration.

INTRODUCTION
Cerebrovascular and neuronal functions are intimately entwined in
the central nervous system (CNS) (75, 76, 194–196). Neurons have
comparatively high metabolic rates with limited cellular reserves
and require a nearly continuous supply of energy metabolites to
maintain and/or replenish the ionic gradients and other metabolic
functions required for rapid synaptic transmission (66). To meet
these needs, neurons require continuous cerebral blood flow (CBF)
for delivery of oxygen. Additionally, transport systems in brain
endothelium of the blood–brain barrier (BBB) mediate the delivery
of glucose and other nutrients from blood to brain, as well as the
clearance of toxic metabolic by-products from the CNS back to
the circulation (195, 196). To ensure adequate vascular access, the
mammalian brain has evolved to become a densely vascular struc-
ture with the diffusion distance between neurons and an adjacent
capillary rarely exceeding 15 μm (166). In humans, the calculated
total perfused vascular length of the cerebrovascular tree is 600–
700 km, with major contribution coming from dense capillary
networks (194). When CBF is disrupted and/or diffusion distance
for transport exchange of metabolites between neurons and circu-
lating blood is increased, neuronal damage may occur rapidly (109).

The coordinated matching of vascular supply to neuronal
demand is not simply the result of a network of passive vascular

conduits. Rather, individual vascular segments adjust both CBF
and transport processes at the BBB in response to systemic,
neuronal and glial signals (75, 195). Appropriate vascular
responses require tight and coordinated cross-talk between multi-
ple cell types in the CNS—as reflected by the concept of the
“neurovascular unit” (NVU) (177, 195, 196). At a cellular level,
the NVU is composed of vascular cells [endothelial cells, vascular
smooth muscle cells (vSMCs) and pericytes], glial cells (microglia
and astrocytes) and neurons (Figure 1). One of these cell types—a
perivascular cell known as the “pericyte”—is uniquely positioned
within the NVU between vascular, neuronal and glial cells (4,
177). Pericytes are now believed to control key neurovascular
functions necessary for neuronal homeostasis (14, 177). Only
recently, a link between pericyte loss and/or malfunction and neu-
rologic disease has begun to be elucidated.

Human neurodegenerative disorders, such as Alzheimer’s
disease (AD), have marked vascular pathophysiology, including
endothelial and pericyte degeneration, instability and rupture of the
vascular wall, disruption of the BBB and/or dysfunctional BBB
transport systems (21, 50, 75, 196). The role of the pericyte in
contributing to AD-related neurovascular dysfunction has recently
been suggested (14, 15, 139, 146, 177, 196). In the present review,
we first introduce the pericyte and describe evidence supporting its
role in regulating the BBB, microvascular structure, blood flow
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regulation and phagocytosis, and clearance of extracellular mol-
ecules from brain interstitial fluid (ISF). We then continue with the
description of the vascular contributions to AD pathogenesis with
an emphasis on pericyte-derived sources of injury that are both
independent and dependent on the AD neurotoxin amyloid
β-peptide (Aβ).

THE PERICYTE
Pericytes are a perivascular cell population embedded on the cap-
illary wall in a shared basement membrane with the endothelium
(Figure 1) (4, 41, 177). Along the arterial–venous axis, pericytes
are predominately found in capillaries, post-capillary venules and
rarely terminal arterioles. According to the prevailing view,
pericytes share certain characteristics with the vSMCs (4).
However, the point of transition from vSMC to pericyte remains
still poorly understood. Pericytes are composed of a cell body and
elongated, multiple finger-like cytoplasmic processes which elon-

gate and cover the abluminal side of brain capillaries in a manner
that is very different from vSMC (41, 177). At discrete points,
lacking a basement membrane, pericytes and endothelial cells
form direct cell-to-cell contacts, known as “peg-and-socket” con-
tacts. At points of contact, connexin-43 hemichannels form gap
junctions permitting direct endothelial–pericyte communication
(18). Fibronectin-rich adhesion plaques connect the basement
membrane to the plasma membrane and underlying actin
cytoskeleton in both cell types (41). Pericyte–astrocyte and
pericyte–neuron contacts are much less understood. However, it
appears that pericytes may play a role in guiding the association of
astrocyte end-feet with the vessel wall (5).

The CNS has higher pericyte-to-endothelial cell ratios than
peripheral vascular beds, that is, estimated 1:1–1:3 in the CNS vs.
1:10–100 in striated muscle, according to some early pioneering
studies (148). Within the CNS, as much as 70%–80% of the
capillary tube is covered with pericyte cell processes (5, 14, 15, 35,
139, 146, 178). Although coverage values are relatively consistent
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Figure 1. Cerebrovascular structure and the neurovascular unit (NVU).
In the brain, pial arteries travel along the cerebrospinal fluid filled
subarachnoid space and give rise to penetrating intracerebral arteries,
which enter the brain parenchyma but are separated from neurons and
glia by the perivascular Virchow-Robin spaces defined by an outer wall
of pia and astrocyte-derived glial limitans membrane. These arteries
branch into smaller arteries, arterioles and brain capillaries distally. At a
cellular level, vascular function requires coordinated cross-talk between
multiple cell types of the NVU. The NVU is composed of endothelial
cells, vascular mural cells (vascular smooth muscle and pericytes), glial

cells (astrocytes and microglia) and neurons. The identity of mural cells
changes along the arterial–venous axis. In intracerebral arteries, vascu-
lar smooth muscle cells occupy most of the vascular wall. At the level
of brain capillaries, pericytes replace smooth muscle cells and are
attached to the vascular basement membrane. Pericytes extend multi-
ple cytoplasmic processes that encircle endothelial cells. The point of
transition from smooth muscle to pericyte remains poorly defined. At
each level, mural cells are further surrounded by astrocyte end-feet and
are in close proximity to neurons and microglia. Figure modified from
Zlokovic (196).
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within cortical regions across independent reports (14, 176, 178),
regional heterogeneity in more permeable regions, such as the
motor neuron dense regions of the spinal cord and fetal germinal
matrix, has also been described (20, 178). Whether a similar rela-
tionship exists in the brain’s circumventricular organs which lack
a BBB has yet to be determined.

Origin of CNS pericytes

CNS pericytes arise from several progenitor cells. During early
embryonic vasculogenesis, chimerization experiments have estab-
lished that neuroectoderm–mesodermal-derived progenitor cells
give rise to pericytes in the forebrain and midbrain, brainstem,
spinal cord and peripheral organs (49, 89, 90). Later in the embry-
onic period and into the early postnatal period, intraparenchymal
proliferation of existing pericytes—a process termed “longitudinal
expansion”—contributes to the further expansion of the brain
pericyte population (1, 68, 117, 118, 155, 157). Whether longitu-
dinal recruitment continues throughout adulthood is not well
understood at present. Recent studies suggest that the cerebral
microvasculature is not quiescent and undergoes continued
remodeling throughout life (64). However, the turnover of
pericytes within the NVU under physiological conditions has yet
to be determined. In models of ischemic injury, circulating bone
marrow progenitor cells have been demonstrated to contribute to
brain pericyte populations (88, 92, 131). However, it has yet to be
shown whether circulating progenitors may also contribute to
pericyte populations in the absence of CNS injury. Additionally,
the cellular source for replenishing the CNS pericyte populations
during postnatal CNS development and in the adult and aging CNS
is not presently known.

Endothelial–pericyte molecular cross-talk

During vasculogenesis and/or angiogenesis, endothelial cells
secrete and/or present cell-bound molecular cues that stimulate
pericytes to proliferate, migrate and attach to nascent capillary
tubes. This cross-talk occurs through several well-defined signal
transduction cascades, including platelet-derived growth factor B
(PDGF-B), transforming growth factor-β (TGF-β), NOTCH,
sphingosine-1 phosphate and angiopoietin cell signaling [reviewed
in (4, 54, 177)]. Each signaling cascade makes differential contri-
butions to the process of “pericyte recruitment.” In simplified
form, endothelial cells secrete PDGF-BB, a homodimer of
PDGF-B, which binds to and activates the platelet-derived growth
factor receptor β (PDGFRβ) located on the pericyte plasma mem-
brane, resulting in pericyte proliferation and migration (1, 54, 68,
97, 159). TGF-β and NOTCH signaling then mediate pericyte
attachment via endothelial upregulation of the adhesion molecule
N-cadherin (95). Bidirectional TGF-β signaling between pericytes
and endothelium regulates quiescence, maturation and differentia-
tion in both cell types (42, 150, 156, 169). Maintenance of PDGF-
B/PDGFRβ and pericyte NOTCH3 signaling are required for
maintenance of pericyte survival (14, 60). Recent evidence sug-
gests that pericyte NOTCH3 may also facilitate pericyte prolifera-
tion during development (174).

Animal models of pericyte deficiency

Genetic manipulation of endothelial–pericyte signaling pathways
results in animal models of pericyte deficiency. For example, dele-

tion and/or genetic manipulation of Pdgfrβ and/or Pdgfb result in
widely utilized pericyte deficient mouse models (5, 14, 35, 159,
176). Pericyte-deficient transgenic mice have proved to be valuable
tools in elucidating the functional roles of CNS pericytes in vivo
and the effects of a chronic BBB disruption caused by pericyte
degeneration on neuronal structure and function.

NEUROVASCULAR FUNCTIONS OF
CNS PERICYTES
Initially, pericytes were described as contractile cells around
endothelial cells in small blood vessels by the French physiologist
Rouget in 1873 (136). Over a century later, the pericyte’s func-
tional role in the CNS has been expanded through organotypic
slice preparations, in vitro BBB models and the in vivo characteri-
zation of cerebrovascular and neuronal phenotypes in pericyte-
deficient transgenic mice (177). Recent in vivo reports have
established that CNS pericytes play pivotal regulatory roles in the
induction and maintenance of the BBB, microvascular stability,
capillary density and angiogenesis, capillary diameter, and blood
flow regulation and the clearance of macromolecules from brain
ISF.

Induction and maintenance of the BBB

The BBB tightly regulates the molecular exchange between circu-
lating peripheral plasma and the CNS. The anatomic BBB is
organized at the level of a continuous endothelial layer that lines
the lumen of the cerebrovascular tree. Each endothelial cell is
connected to adjacent endothelial cells via tight junctional com-
plexes and adherens junctions, which limit unregulated
paracellular transport of circulating molecules. Low levels of
transendothelial vesicular transport further limits non-specific
transport of polar solutes and large macromolecules into the CNS
(75, 195, 196). A series of tightly regulated transport systems for
nutrients and energy metabolites and for brain clearance of meta-
bolic waste products have evolved in the CNS endothelium to meet
neuronal metabolic needs and maintain a microenvironment sup-
portive of neuronal function. Large molecules, such as peptides
and proteins, are in general transported slowly across the BBB via
specialized transport systems (198, 200, 201) or are excluded from
the brain in the absence of a specific transport system (193, 202).

Independent studies utilizing pericyte-deficient mice have dem-
onstrated that pericytes play a pivotal role in establishing and
maintaining endothelial BBB properties (5, 14, 35). Early in
embryogenesis, pericytes accompany endothelial cells as they
invade neural tissue from the adjacent perineural vascular plexus
(35, 68). Recent work in pericyte-deficient Pdgfrβ+/− mice has
demonstrated that pericytes induce formation of a functional BBB
prior to the appearance of perivascular astrocytes (35). Similarly,
embryonic pericyte detachment leads to BBB disruption, vascular
leakage and overt hemorrhage in the immediate postnatal period
(95). At a molecular level, initial BBB formation is achieved
through pericyte-driven downregulation of endothelial gene prod-
ucts which promotes permeability through transcytosis, for
example, caveolin-1 (Cav1) and plasmalemma vesicle-associated
protein (Plvap), and/or leukocyte infiltration, for example, inter-
cellular adhesion molecule 1 (Icam1) (35, 67). Therefore, pericytes
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suppress a leaky and pro-inflammatory phenotype of endothelial
cells during the embryonic period.

Following birth, pericytes maintain endothelial BBB and blood–
spinal cord barrier properties throughout life (5, 14, 95, 139, 178).
Within the adult CNS, there is an inverse relationship between
regional pericyte coverage and vascular permeability under physi-
ologic conditions (178). In adult and aged pericyte-deficient
Pdgfrβ+/− mice, a loss of brain pericytes increases non-specific
paracellular endothelial transport through disrupted tight junctions
(14, 178). For example, the levels of the essential tight junction
transmembrane proteins occludin and claudin-5, the adaptor
protein zonula occludens-1 and the adherens junction protein vas-
cular endothelial cadherin are progressively reduced with aging in
pericyte-deficient mutants. This leads to brain accumulation of
exogenous vascular tracers and circulating plasma proteins with
vasculotoxic and neurotoxic properties, including thrombin,
fibrinogen/fibrin, plasminogen/plasmin and different non-immune
and immune immunoglobulins (14). Other works in young
pericyte-deficient Pdgfbret/ret mutants has also demonstrated
increased transendothelial vesicular transport. Therefore, in the
adult brain, pericytes maintain BBB properties through promotion
of endothelial tight junctional complexes and suppression of non-
specific vesicular transport (5). Unlike the embryonic period, brain
pericyte loss does not lead to upregulation of inflammatory
cytokines, chemokines or enhanced immune cell infiltration in
early to mid-adulthood, but only with advanced aging (14).

Microvascular stability

Vessels that lack pericytes are dilated and tortuous with frequent
rupture prone out-pouchings of the vascular wall—called
“microaneurysms” (4, 48, 67, 95, 97). Evidence of rupture and/or
vascular fragility is frequently evident in pericyte-deficient
mutants (14, 95). In humans, brain or spinal cord pericyte reduc-
tion is associated with hemorrhage in prematurity, amyotrophic
lateral sclerosis (ALS) and AD (20, 146, 179). Recent works have
suggested that pericyte–endothelial cell interactions stabilize the
vascular wall through multiple mechanisms. Pericytes secrete the
stabilizing molecule angiopoeitin 1, which activates endothelial
receptor Tie2 receptors (79). Pericytes secrete transforming growth
TGF-β, which activates the TGFβR2-Alk5-Smad2/3 pathway
within endothelium (3). This promotes endothelial maturation
including formation of both stabilizing barrier properties and the
vascular basement membrane (BM) (42, 156)—a protein-rich peri-
endothelial scaffolding of extracellular matrix necessary for vas-
cular cell attachment (195). Pericyte-endothelial signaling
stimulates endothelial production of multiple BM proteins, includ-
ing fibronectin, nidogen-1, perlacan and laminin (156). Pericytes
also directly synthesize and secrete fibronectin contributing to
BM structure and downregulate and/or inhibit the activity
of destabilizing matrix metalloproteinases (MMP), including
MMP-2 and MMP-9, in the latter stages of angiogenesis (144,
156). In the setting of pericyte loss, disruption of the BM contrib-
utes to vascular instability, dilatation and rupture (14).

Angiogenesis and microvascular density

Pericytes play dynamic and at times opposing roles in
angiogenesis. Early in angiogenesis, pericytes secrete angiogenic

factors, that is, vascular endothelial growth factor-A (VEGF-A),
which stimulates sprout formation, endothelial proliferation and/or
survival (36, 118). Pericytes also express multiple MMPs, includ-
ing MMP 2, 3 and 9, and urokinase plasminogen activator receptor
to degrade BM proteins to facilitate endothelial migration (23, 45,
172). Some works have also suggested that pericyte migration
precedes and guides endothelial tube formation, but this remains
controversial (56, 117, 118, 172). Later in angiogenesis, pericytes
inhibit endothelial proliferation and deposit BM proteins as
described earlier. Pericytes also secrete the tissue inhibitor of
metalloproteinase 3 (TIMP3) capable of inhibiting multiple
MMPs, including MMP 1, 10 and 14 as well as a disintegrin and
metallopeptidase domain 15 (ADAM15) (144, 156); this stabilizes
the BM and concludes the angiogenic process. In pathologic states,
pericyte angiogenic functions may become dysregulated with pro-
found implications for CNS vascular structure. For example,
overactivation of pericyte MMP-9 and/or loss of pericyte-derived
trophic support contribute to capillary loss and ultimately
hypoperfusion in adult mice (14, 15).

Continued brain angiogenesis is counterbalanced by vascular
pruning throughout life (64). The net balance between these two
processes regulates capillary density. Studies in pericyte-deficient
mutants have revealed context-dependent effects of pericytes on
regulation of capillary density. In the developing CNS, pericyte
loss or detachment leads to endothelial hyperproliferation without
changes in capillary branching and/or vascular density (67, 96). In
the adult brain, however, variable levels of brain pericyte loss
result in endothelial apoptosis, microvascular regression and
reductions in capillary density (5, 14). Generation of a wide spec-
trum of pericyte deficient mutants through endothelial specific
deletion of Pdgfb results in either vascular regression and/or vas-
cular hyperproliferation depending on the magnitude of pericyte
loss in the retina (48). This suggests that pericytes may have
dose-dependent as well as context-dependent effects on vascular
networks. However, inducible models of pericyte deficiency are
required to better delineate the roles of pericytes during postnatal
CNS development, growth, adulthood and aging.

Neurovascular coupling and blood
flow regulation

Blood flow is carefully matched to neuronal metabolic need in the
CNS—a process called “neurovascular coupling” (7, 129). It was
previously thought that blood flow modulation was predominately
regulated through alterations in vSMC tone in penetrating cerebral
arteries and/or arterioles in response to synaptic transmission and
release of vasoactive mediators [reviewed in (75)]. This view,
however, has more recently been complemented by multiple
reports suggesting that pericytes may also play a role in blood flow
modulation at the capillary level.

Pericytes express both contractile proteins (44, 62) and recep-
tors for multiple vasoactive mediators including catecholamines,
vasopression, angiotensin II, endothelin-1, adenosine and VIP (41,
62). Exposure of pericytes to vasoactive substance results in eleva-
tion of intracellular calcium, which initiates the contractile appa-
ratus (69, 83, 115). In organotypic cerebellar slice and retinal
preparations, pericytes were shown to alter capillary diameter by
constricting or dilating in response to neurotransmitters and/
or electrical stimulation (126). It was also demonstrated that
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stimulation of the contractile response propagated among adjacent
pericytes (126); therefore, pericytes may help coordinate
responses of an entire microvascular segment. The absence and/or
reductions in brain or retinal pericytes are associated with capil-
lary dilatation in vivo, confirming that pericytes regulate capillary
diameter in vivo (5, 67, 96, 97). Conversely, pericytes have been
shown to assume a hypercontractile phenotype and obstruct cap-
illary blood flow in response to pathologic injury, such as ischemia
(187) and/or traumatic brain injury (46).

Despite possessing contractile properties, the relationship
between pericyte-mediated capillary dilatation and/or constriction
and blood flow regulation remains less definitive in vivo. A loss of
brain pericytes in the young mouse brain results in impairment of
blow flow responses to brain activation in the presence of unaltered
electrophysiological neuronal responses, suggesting that pericytes
fulfill an important regulatory role in functional hyperemia (14).
However, an independent study confirmed pericyte-mediated con-
striction of cortical capillaries, but suggested that this did not alter
functional hyperemic responses in vivo (52). This raises questions
as to the significance of capillary diameter changes and its rel-
evance to modulating blood flow responses to brain activation.
More recently, carefully designed in vivo multiphoton experiments
have suggested that pericytes dilate before arterioles in response to
neuronal stimulation and may contribute up to ∼80% of the func-
tional hyperemia response (6). Thus, the emerging view suggests
that pericytes also contribute to blood flow regulation under physi-
ologic and pathologic conditions, which should be investigated in
greater detail by future studies.

Phagocytosis and clearance of
extracellular molecules

Pericytes take up multiple soluble small molecules, for example,
horseradish peroxidase, india ink and dextran, via non-specific
pinocytosis irrespective of route of administration—including
peripheral injection, intraventricular injection and direct introduc-
tion in brain extracellular fluid [reviewed in (41, 162)]. Engulfed
molecules are transported to lysosomes for enzymatic degradation
(41, 162). In chronic BBB disruption models, pericyte phagocytic
properties help clear toxic circulating plasma proteins that are
normally excluded from the brain, including immunoglobulins,
fibrin and albumin (5, 14). In models of acute brain injury,
pericytes phagocytose cellular debris (24, 103). Recently,
neuroinflammation has been shown to accelerate pericyte
phagocytic activity (130). In addition to non-specific uptake,
pericytes may also help specifically regulate the neuronal
microenvironment by handling clearance of certain macromol-
ecules in both physiologic and pathologic conditions. For example,
pericytes express both the Aβ clearance receptor low-density lipo-
protein receptor-related protein-1 (LRP1) and the ATP-binding
cassette protein ABCA1 and may therefore contribute to brain Aβ
and cholesterol homeostasis, respectively (139, 142, 175). Thus,
pericyte degeneration may result in accumulation of different
metabolites in the CNS that are normally cleared by pericytes.

VASCULAR MECHANISMS IN AD
AD is the most common cause of dementia worldwide and is
characterized by three histopathologic hallmarks—accumulation

of brain and vascular Aβ (133), tau hyperphosphorylation and
formation of neurofibrillary tangles (10, 77), and neuronal loss
(133, 194). Epidemiologic studies have identified considerable
overlap between risk factors for cerebrovascular disease and AD
(76, 81, 165). The presence of cerebral hypoperfusion (137), sub-
clinical infarcts (170) and/or the presence of one or more cerebral
infarcts increase risk for AD (152). Conversely, control of vascular
risk factors reduces vascular lesions in AD and may delay disease
progression (40, 93, 135). Most AD pathologic specimens have
evidence of mixed vascular pathology and small vessel disease
with vascular changes being found in >40% of AD pathologic
specimens (80, 98, 145, 163). Pathologic changes include pericyte
loss and degeneration (11, 139, 146), atrophy and degeneration of
vSMC, endothelial loss and reduction in capillary density, forma-
tion of collapsed and acellular capillary tubes (so-called string
vessels), mitochondrial alterations, a thickened vascular basement
membrane, loss of tight junctional and adherens junction proteins,
increased endothelial pinocytosis and vesicular transport and BBB
compromise leading to accumulation of plasma proteins in brain
parenchyma, ISF and cerebrospinal fluid (CSF) [reviewed in (21,
50, 75, 196)].

Although classically defined by the amyloid hypothesis (65),
these findings have raised questions as to the role of Aβ in AD and
have led to the development of a vascular two-hit hypothesis of AD
pathogenesis (Figure 2) (140, 141, 194, 196). This hypothesis
maintains that reduced CBF gives rise to hypoxia and chronic
perfusion stress, from one end, and BBB disruption gives rise to
brain accumulation of plasma-derived neurotoxins, from the other,
which may converge and initiate neuronal dysfunction and degen-
eration independently and/or prior to Aβ deposition and the devel-
opment of tau pathology (81, 141, 196). Vascular dysfunction and
injury also impairs clearance of Aβ from the brain (39, 199), leads
to increased influx of circulating Aβ into the brain (37, 47) and
elevates expression and/or processing of the Aβ precursor protein
(APP) (2, 189). This results in Aβ accumulation and deposition
within brain parenchyma and surrounding cerebral blood vessels.
Aβ may then accelerate both vascular (12, 139, 196) and neuronal
injury (173, 186) and promote self-propagation of cerebral and
vascular β-amyloidosis (47, 105). The following subsections
describe some mechanisms through which microvascular pathol-
ogy contributes to AD-like neurodegeneration. The integral role of
the pericyte in mediating vascular and neuronal changes in AD is
described at length in a separate subsection (Figure 3) (please see
the section Pericytes in AD).

BBB disruption in AD

In human subjects, post-mortem brain tissue studies have shown
that disruption of the BBB is associated with AD neuropathology
and cognitive impairment (31, 33, 34, 51, 53, 57, 63, 74, 124, 138,
143, 146, 195, 196). The time point at which AD disruption occurs
during disease pathogenesis remains unclear. Recent studies in
human subjects at genetic risk for AD, such as carriers of the
apolipoprotein ε4 allele (ApoE4), suggest that vascular permeabil-
ity changes occur prior to cognitive decline (61). In transgenic
mice overexpressing human APP, BBB permeability changes
precede neuronal injury and AD pathology (139, 168). The mecha-
nisms of BBB disruption remain poorly defined but may result
from vasculotoxic effects of pericyte loss and/or endothelial injury
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as a result of vascular risk factors, that is, dyslipidemia and/or Aβ
(19, 139, 146, 168). Heightened vascular permeability may arise
from reduced expression or accelerated degradation of tight and
adherens junctional proteins, increased bulk-flow transcytosis,
overt vascular rupture and/or combination thereof (195, 196). In
transgenic mice expressing human ApoE4, increased activation of
matrix metalloproteinase-9 degrades tight and adherens junctional
proteins leading to vascular leakage (15). A similar cascade has
been identified in human ApoE4 carriers (61). Whether a similar
pathogenic cascade is erroneously activated in sporadic AD in the
absence of ApoE4 remains to be experimentally determined.

Irrespective of the mechanisms involved, the end by-product of
vascular disruption is accumulation of circulating plasma proteins
and erythrocyte-derived hemoglobin in brain ISF and parenchyma
(177, 196). Extravasated proteins may remain in the extracellular
compartment or become internalized by different cell types of the

NVU, including microglia, pericytes and neurons, and frequently
co-localize with markers of cell death and/or injury (5, 14, 15, 101,
178). In multiple animal models, BBB disruption is an important
contributor to neuronal injury and dysfunction (14, 15, 139, 178,
190). The mechanisms of injury are numerous. For example, brain
accumulation of thrombin has been demonstrated in AD (192), and
elevated thrombin concentrations lead to neuronal and vascular
injury as well as cognitive impairment (26, 106). Plasmin degrades
neuronal laminin, thereby disrupting neuron-extracellular matrix
and sensitizing neurons to secondary injury (27). Fibrin and/or its
precursor fibrinogen propagate vascular injury and neuroinflam-
mation through accelerated vascular regression and barrier disrup-
tion (124). Aβ interacts with and stabilizes fibrin clots (32), and
greater fibrin deposition is seen in vessels inflicted with cerebral
amyloid angiopathy (CAA) (74). Depletion of fibrinogen reduces
CAA and cognitive decline in transgenic AD mice (32) and may

Vascular risk factors Cerebrovascular disorder

hit 1

hit 2

Oligemia Blood–brain barrier dysfunction

Accumulation of neurotoxinsReduced capillary perfusion

            and hypoxia Aβ production Impaired Aβ clearance 

Aβ

Neuronal dysfunction

Neurodegenerative changes

Neuronal loss

DEMENTIA

Figure 2. The vascular two hit hypothesis of Alzheimer’s neuro-
degeneration. Vascular injury as result of long-standing vascular risk
factors, for example, hypertension, dyslipidemia, diabetes, smoking, or
obesity, genetic risk, for example, apolipoprotein ε4, and/or other uniden-
tified environmental or toxic injury leads to early vascular dysfunction
characterized by abnormalities in endothelial cells, pericytes and vascular
smooth muscle cells. Vascular cell dysfunction and/or degeneration
results in hypoperfusion (oligemia) and blood–brain barrier (BBB) dys-
function (hit 1) leading to hypoxia and accumulation of multiple plasma-
derived neurotoxins, respectively, and contributes to neuronal
dysfunction, degeneration and development of cognitive decline (solid

lines). BBB dysfunction, mural cell loss and hypoperfusion/hypoxia
reduce vascular amyloid β-peptide (Aβ) clearance across the BBB and in
vascular mural cells and increases production of Aβ from Aβ-precursor
protein (APP), causing Aβ accumulation in brain (hit 2, dashed lines).
Pathologic elevations in soluble Aβ lead to the formation of neurotoxic Aβ
oligomers and accelerates Aβ deposition around neurons and on blood
vessels. Aβ species then amplify both vascular and neuronal injury. Tau
phosphorylation and/or pathology, for example, caspase-cleavage and/or
formation of neurofibrillary tangles, within neurons results from conver-
gence of vascular injury (hypoperfusion and BBB disruption) and direct Aβ
neurotoxicity. Figure modified from Zlokovic (196).
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therefore represent an important therapeutic target. In addition to
plasma proteins, extravasation of erythrocytes due to micro-
hemorrhage causes deposition of hemoglobin-derived products,
such as free iron, which generates reactive oxygen species and
non-specific oxidant injury (182, 190, 191). The presence of these
proteins as well as albumin and immunoglobulin G contributes to
brain edema and may alter perfusion dynamics through compres-
sion of brain capillaries (195, 196). Finally, disruption of the BBB
may increase brain influx of circulating Aβ (37, 146).

Endothelial dysfunction

Abnormal endothelial function leads to excess generation of poten-
tially neurotoxic and pro-inflammatory molecules (58). For
example, AD microvessels secrete neurotoxic factors, such as
thrombin, which injure and kill neurons (59, 188). Isolated
microvessels from human AD subjects also secrete and/or express a
number of pro-inflammatory mediators, such as nitric oxide,
cytokines (tumor necrosis factor, interleukin-1β and interleukin-6),
chemokines (monocyte chemoattractant protein 1 and interleukin-
8), prostaglandins and leukocyte adhesion molecules (58). In addi-
tion to neurotoxic and/or pro-inflammatory properties, AD
endothelial cells demonstrate abnormal metabolic functions (99,

100). The BBB prevents unregulated influx of circulating polar
solutes, including glucose, from blood into brain. Therefore,
expression of endothelial GLUT1, which is also known as the solute
carrier family 2, facilitated glucose transporter membrane 1
(SLC2A1), is required for facilitated diffusion of glucose into the
brain. In human AD, endothelial GLUT1 protein levels are reduced
(70, 82, 107). Abnormalities in glucose transport and/or utilization
are visualized early with 2-[18F] fluoro-2-deoxy-D-glucose positron
emission tomography imaging (FDG-PET) in the AD hippo-
campus, parietotemporal cortex and/or posterior cingulate cortex
(127). In those at genetic risk for AD, abnormal glucose handling
precedes brain atrophy and neuronal dysfunction (108, 132).
However, the significance of these findings remains controversial,
and whether reduced glucose transport contributes to or, conversely,
is the by-product of ongoing neurodegeneration and resulting
reductions in metabolic demand still awaits the final answer.

Altered vascular Aβ clearance

Pathologic accumulation of Aβ oligomers and insoluble fibrils may
theoretically result from overproduction and/or diminished brain
clearance of β-amyloid. In sporadic AD, however, impaired Aβ
clearance, but not overproduction, is the key factor leading to Aβ

Figure 3. Pericyte degeneration leads to a chronic BBB disruption and
vascular-mediated secondary neuronal injury and degeneration. Pericyte
loss and/or degeneration represent an important cellular source of hit 1
vascular injury in Alzheimer’s disease. Pericyte degeneration leads to
BBB disruption and unrestricted entry and accumulation of blood-
derived products in brain including erythrocyte-derived hemoglobin and
plasma-derived proteins such as albumin, plasmin, thrombin, fibrin,
immunoglobulin and others. Plasmin and thrombin have direct neuro-
toxic properties, whereas fibrin accelerates neurovascular injury. Brain

degradation of hemoglobin liberates free iron, which catalyzes forma-
tion of reactive oxygen species (ROS) leading to further injury. Albumin
increases oncotic pressure resulting in edema, microvascular compres-
sion and reduced blood flow. Pericyte loss also leads to endothelial cell
death and microvascular regression leading to additional simultaneous
reductions in blood flow. In mouse models, vascular injury in absence of
Aβ as a result of pericyte loss is sufficient for neurodegeneration. Figure
modified from Zlokovic (196).
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accumulation (102). Aβ may be cleared through transendothelial
trafficking to circulating blood, enzymatic degradation such as
neprilysin, insulin-degrading enzyme, tissue plasminogen activa-
tor and MMPs, in astrocytes, vSMC, pericytes and neurons within
parenchyma, and clearance through perivascular ISF-CSF bulk
flow (16, 196, 199). The vascular pathway is the major route of
removal of Aβ from the brain (25, 149, 199). The predominate
clearance protein—low-density lipoprotein receptor-related
protein-1 (LRP-1)—binds Aβ on its abluminal plasma membrane
and initiates its clearance to blood, as shown in multiple animal
models (13, 39, 78, 149) and in vitro BBB models (39, 110, 184).
ApoE4, but not ApoE2 or ApoE3, significantly inhibits LRP1-
mediated Aβ brain clearance (38). Apolipoprotein J, also known as
clusterin, contributes to Aβ clearance via a related receptor—the
low-density lipoprotein receptor-related protein-2 (LRP-2) (13).
The efflux transporter P-glycoprotein also makes contributions to
vascular β-amyloid clearance (29). In addition to transendothelial
transport, LRP1 expression in both vSMC and pericytes mediate
Aβ uptake and degradation in vascular mural cells (12, 84, 139,
175). Reductions in LRP1 levels and/or alterations in receptor
function as a result of oxidation are associated with brain Aβ
accumulation in rodents, non-human primates, transgenic AD
mice and human subjects with AD (9, 12, 39, 43, 149).

Brain hypoperfusion in AD

Neurons are exquisitely sensitive to reductions in CBF—called
“hypoperfusion”. In human subjects and animal models,
hypoperfusion is sufficient to induce cognitive decline (17, 76,
196). At a cellular level, moderate (∼20%) blood flow reductions
may result in altered protein synthesis impairing processes, such as
long-term potentiation and synaptic plastic, required for learning
and memory (71, 75). At greater reductions (>30%), the synthesis
of ATP becomes impaired and anaerobic metabolism prevails. This
results in reduced ATPase activity limiting generation of action
potentials and cellular transport, thus contributing to neuronal
dysfunction and/or alterations in the neuronal microenvironment,
that is, lower cellular pH, electrolyte imbalances and cytotoxic
edema (140, 196). Acute reductions in CBF (>80%) result in
ischemic neuronal death (109).

Reductions in CBF have not only been observed in human
AD subjects (8, 75, 104, 196), but in some studies precede
neurodegenerative changes (75, 85, 86, 137, 147, 151). In APOE4
carriers, CBF reductions and reduced CBF responses to brain
activation may occur prior to brain atrophy and Aβ accumulation
and worsen as the disease progresses (85, 147). A similar relation-
ship between blood flow changes and course of disease has been
demonstrated in transgenic mouse models expressing both human
APOE4 and APP (15, 112, 139). A number of studies in animal
models suggest that reduced CBF accelerates multiple stages of
AD neurodegeneration. In transgenic AD mouse models, bilateral
occlusion of the common carotid artery increases neuronal Aβ
levels and tau phosphorylation and accelerates cognitive decline
and neuronal loss (87, 185). In human AD and transgenic models,
hypoperfusion appears to accelerate vascular amyloid deposition
and CAA, which may, in turn, lead to further ischemia and
microinfarctions (116). Therefore, hypoperfusion and subsequent
Aβ accumulation may constitute a feed-forward loop.

AD-related impairment in blood flow may result from at least two
processes: aberrant vascular reactivity and microvascular degenera-
tion. In human subjects, CBF changes occur prior to changes in
vascular volume as evidenced by cerebral blood volume magnetic
resonance imaging (MRI) (91). This suggests that abnormal vascu-
lar function may precede vascular degeneration. The mechanism(s)
through which vascular reactivity becomes disrupted in AD have
been shown to involve pathologic contractile properties in vSMC in
small penetrating arteries. For example, studies in both human AD
subjects and transgenic models have demonstrated upregulation of
two transcription factors, myocardin (MYOCD) and serum
response factor (SRF), important for controlling vSMC differentia-
tion and leads to upregulation of vSMC contractile proteins, a
hypercontractile vSMC phenotype, and, ultimately, impaired
blood flow (12, 28). In human AD, reduced microvascular diameter
suggestive of a hypercontractile phenotype has been observed
in the hippocampus (22). MYOCD and SRF overexpression in
microvascular pericytes has also been suggested (R.D. Bell, E.A.
Winkler and B.V. Zlokovic, unpub. data) and may contribute to these
changes. However, further investigation is needed to define the role
of contractile protein expression in AD pericytes.

Aβ may also lead to vessel contraction and impairment in CBF
as evidenced by the vaconstrictory effect of exogenous Aβ (111,
113, 114, 119) and aberrant vascular reactivity in transgenic
models overexpressing APP (112, 139, 164, 183). Aβ impairs CBF
on both luminal and abluminal targets (123). On the luminal mem-
brane, Aβ binding to the receptor for advanced glycation end
products (RAGE) leads to production of endothelin, a potent a
potent vasoconstrictor (37, 195). Meanwhile, Aβ binding to the
scavenging receptor CD36 on vascular and perivascular cells leads
to oxidative stress and associated vascular dysfunction (121, 122).
Deletion of CD36 protects against CBF reductions, vascular
Aβ accumulation and slows cognitive decline in aged mice
overexpressing APP (122). Therefore, improvement in CBF may
delay AD histopathologic and behavior changes.

In addition to dysfunctional vasomotor responses, histologic
studies have demonstrated focal vascular regression and reduced
focal vascular density in human AD and transgenic models (11,
21, 58, 120, 139, 183). Neuroimaging studies demonstrating
reductions in cerebral blood volume corroborate findings of
microvascular degeneration (91, 167, 181). Genome-wide tran-
scriptional profiling in AD human endothelium has identified
downregulation in the mesenchyme homeobox gene-2 (MEOX2),
a transcription factor important for vascular differentiation and
patterning, as a key contributor to aberrant angiogenic responses
to angiogenic stimuli, endothelial apoptosis and chronic
hypoperfusion (183). In mouse models, heterozygosity for Meox2
is sufficient to induce neurodegenerative changes (14). Contribu-
tions of additional sources of vascular injury have been docu-
mented, including pericyte loss (11, 139, 146), Aβ vasculotoxicity
(161) and/or Aβ-mediated inhibition of angiogenesis (120).
Whether pericyte loss precedes and/or leads to downregulation of
endothelial Meox2 remains to be experimentally determined.

PERICYTES IN AD
Multiple independent reports have demonstrated pericyte loss
and/or degeneration in both the hippocampus and cortex in human
AD subjects (11, 50, 146). At an ultrastructural level, pericytes
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demonstrate large numbers of intracellular inclusions, pinocytotic
vesicles, large lipid granules and mitochondrial abnormalities,
suggesting cellular dysfunction and/or degeneration (11, 50).
Pericyte degenerative changes are associated with capillary reduc-
tions and gross dilatation and tortuosity of surviving vessels (11).
In individual AD subjects, reductions in pericyte coverage
inversely correlate with evidence of BBB disruption, such as
leakage of the plasma proteins including immunoglobulin G and
fibrin (146). Although these observations are limited to post-
mortem tissue, pericyte dysfunction and/or loss are associated
with key attributes of AD vascular pathology—vascular regression
and disrupted vascular permeability.

Factors contributing to pericyte loss in AD

The mechanism(s) of pericyte loss have yet to be completely
defined. Some studies have suggested that brain pericytes do not
decrease with normal aging in rodents during adulthood (14, 125,
128). Additional studies in normally aged animals are needed,
however, to confirm these findings. Preliminary data have sug-
gested that vascular factors, for example, hypertension and
dyslipidemia, may lead to pericyte injury and/or death (153, 158).
Future works are still needed to establish a contributory link
between vascular injury and early pericyte loss in AD. In later
disease stages, Aβ accumulates on and around brain capillaries and
pericytes (171, 180). Pericytes express the Aβ clearance receptor
LRP-1 which binds and internalizes different Aβ species for
lysosomal degradation within brain pericytes (139, 175). At high
concentrations and prolonged exposure, Aβ species overwhelm the
clearance capacity and lead to pericyte cell death in vitro (139,
175). Reductions in pericyte cell number and/or coverage have
been similarly observed in transgenic mice with β-amyloidosis in
vivo as a result of overexpression of human APP and accumulation
of Aβ in pericytes (122, 139). Other works have also implicated the
scavenging receptor CD36 in AD-related pericyte loss (122).

A loss of brain pericytes, in turn, leads to reduced Aβ clearance
through the LRP-1 degradative pathway promoting Aβ accumula-
tion and/or deposition in the brain (139). Therefore, pericytes are
important for brain Aβ clearance but are susceptible to Aβ toxicity,
a potential feed-forward mechanism. In human AD subjects,
extravascular Aβ deposits inversely correlate with pericyte cover-
age in the AD hippocampus—meaning those with greatest Aβ load
have fewest pericytes (146). This finding does not permit
directionality of this relationship to be established but may reflect
the by-product of both Aβ-driven pericyte toxicity and a loss of
pericyte-dependent Aβ clearance.

Pericytes and Aβ-independent
neurodegeneration

Recent works have suggested that a loss and/or dysfunction of
brain pericytes may accelerate AD-like neurodegeneration cascade
in vivo. In mouse models, a loss of brain pericytes is sufficient to
induce neurodegenerative changes in the absence of Aβ through
two major pathways—BBB disruption and hypoperfusion
(Figure 3) (14, 177, 178). On the one hand, a loss of pericytes leads
to heightened vascular permeability through a disrupted BBB.
This, in turn, leads to an accumulation of multiple blood-derived
neurotoxic and vasculotoxic molecules seen in human AD, includ-

ing fibrin (124), thrombin (26, 106), plasmin (27) and hemoglobin-
derived iron and reactive oxygen species (73, 134, 182).
Concomitantly, a loss of pericytes also leads to regression of brain
microvessels, mainly capillaries. This gives rise to a chronic per-
fusion stress and hypoxia. Toxin accumulation and hypoxia may
then simultaneously converge at the neuronal interface resulting in
injury, dysfunction and ultimately cell death (14).

The importance of both pathways to the neurodegenerative phe-
notype was demonstrated in comparative studies between two dif-
ferent mouse lines: a mouse deficient in PDGFRβ signaling
(PdgfrβF7/F7 mice) and a mouse heterozygous for mesenchyme
homeobox gene-2 involved in vascular patterning (Meox2+/−mice).
As previously mentioned, Meox2 is transcriptionally down-
regulated in AD and leads to reduced angiogenesis, microvascular
reductions and diminished CBF (183). Meox2+/− mice have
reduced microvascular density, but intact pericyte populations and
normal BBB integrity (14, 183). In contrast, PdgfrβF7/F7 mice have
a deficiency in brain pericytes, which leads to both a microvascular
reduction and a disruption. In both mouse lines, neurodegeneration
was observed, suggesting that chronic hypoperfusion is sufficient
to induce neuronal injury. However, the magnitude of such
changes was much larger in pericyte deficient mutants highlighting
the synergy between blood-derived toxin accumulation and
hypoxia.

Pericytes and APOE genotype

Further evidence for the importance of Aβ-independent vascular
injury in neurodegenerative changes comes from works in two
transgenic mouse lines overexpressing the human APOE4 gene
(15, 197). The three major apoE isoforms (E2, E3 and E4) differ
in single amino acid substitutions at two distinct residues and
alter the structure and function of apoE at molecular and cellular
levels (197). APOE4 is the strongest genetic risk factor for
sporadic AD (160). Individuals homozygous for APOE4 have a
30% and 60% lifetime risk to develop disease at 75 and 85 years of
age, respectively (55). The APOE4 gene may contribute to signifi-
cant neurovascular dysfunction prior to cognitive decline and
Aβ-accumulation (194, 197) and is associated with greater deficits
in BBB permeability in AD (74, 143, 192).

The mechanism of these BBB permeability changes was not
established until recently. In mice, overexpression of human
apoE4, but not apoE2 or apoE3, leads to upregulation of a pro-
inflammatory cyclophilin A (CypA)-nuclear factor κB (NF-κB)-
matrix metalloproteinase 9 (MMP-9) pathway within brain
pericytes (Figure 4). MMP-9 is then secreted from pericytes and
becomes activated. This, in turn, leads to enzymatic degradation of
endothelial cell tight junctional complexes resulting in BBB break-
down and unregulated influx of the blood-derived neurotoxins,
including thrombin, fibrin and hemoglobin-derived iron. Chronic
barrier disruption in addition to caspase-independent effects of
apoE4 led to pericyte reductions, microvascular regression and
CBF reductions. Importantly, apoE4-driven vascular injury was
sufficient to induce neuronal dysfunction, injury and ultimately
cell death. Pharmacologic interventions inhibiting each step of the
CypA-NFκB-MMP-9 pathway with specific inhibitors of CypA
and NF-κB or inhibition of MMP-9, and genetic deletion of CypA
reduced both vascular and neuronal dysfunction in transgenic
APOE4 mice, suggesting that dysfunction of pericytes can be
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therapeutically controlled and that pericytes may represent a novel
cellular therapeutic target (15).

This work has recently been extended to cognitively normal
subjects including APOE4 carriers and APOE4 non-carriers (61).
This study has shown that individuals harboring the APOE4 allele
develop an age-dependent BBB breakdown as evidenced by
elevated CSF : plasma albumin quotient, which correlated with
increased CypA levels and activated MMP-9 levels in the CSF,
suggesting that activation of the pro-inflammatory CypA pathway
occur before cognitive decline (61). Additionally, a recent study
reported that CypA mRNA levels are reduced in APOE2 carriers
further supporting the role of CypA in regulating neurovascular
function (30). Collectively, these data suggest that the BBB
damage likely involving pericyte dysfunction might contribute to
early neurovascular dysfunction seen in animal models and
humans with the APOE4 allele.

Pericytes and Aβ accumulation

To determine whether a loss of brain pericytes also contributes to
Aβ-dependent toxicity in AD-like neurodegeneration, our group
recently published a study in which pericyte deficient mutants
(Pdgfrβ+/− mice) were crossed with mice which overexpressing the
Swedish mutation of human APP (APPsw/0) (139) (Figure 5).
APPsw/0 mice accumulate parenchymal and vascular Aβ leading to
amyloid plaques and memory deficits, but do not develop tau
pathology and/or neuronal loss (72, 154). Enhanced pericyte loss
(APPsw/0;Pdgfrβ+/− mice) leads to greater accumulation of soluble
Aβ40 and Aβ42 species as a result of reduced pericyte-dependent
clearance of soluble Aβ species from brain ISF, as shown by in vivo
microdialysis in the hippocampus. Impaired clearance of soluble
Aβ then contributes to accelerated deposition of insoluble Aβ
resulting in CAA and parenchymal β-amyloid plaques.

Pericytes and tau pathology

APPsw/0;Pdgfrβ+/− mice also developed tau pathology at the early
age of 9 months including neuronal accumulation of hyper-
phosphoryled tau species, caspase-cleaved tau and tau aggregates
(139). Importantly, tau pathology at this relatively early disease
stage was not observed in either APPsw/0 mice or Pdgfrβ+/− mice,
suggesting that both pericyte-driven vascular injury and Aβ
elevations must be present to induce early appearance of tau
pathology. With respect to neuronal loss, Pdgfrβ+/− mice did
show a more moderate neuronal loss as a result of direct vascular
injury as previously described (14). However, the magnitude of
neuronal dysfunction and/or loss, and behavioral impairment
on hippocampal-dependent tasks was much more severe in
APPsw/0;Pdgfrβ+/− mice (139). Consistent with the two-hit vascular
hypothesis, pericyte-driven direct vascular injury and Aβ working
together can induce tau pathology and neuronal loss in vivo ampli-
fying cognitive decline. Aβ accumulation in pericytes in turn leads
to pericyte loss, worsening AD-related neurovascular and neuronal
dysfunction (Figure 5).

SUMMARY AND FUTURE
PERSPECTIVES
The contributions of pericytes to neurodegenerative disease have
only recently been recognized. Among chronic neurodegenerative
diseases, pericyte loss and/or dysfunction have been implicated in
AD pathogenesis. However, pericyte degeneration seems not to be
unique to AD as pericyte loss and dysfunction have been recently
reported in other neurodegenerative disorders including ALS (179)
and cerebral autosomal dominant arteriopathy with subcortical
infarcts and leukoencephalopathy (CADASIL) (60), as well as in
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Figure 4. Apolipoprotein E4 triggers early pericyte dysfunction and
blood–brain barrier (BBB) breakdown. Apolipoproteins are secreted by
astrocytes. ApoE2 and apoE3, but not apoE4, bind to the low density
lipoprotein receptor-related protein-1 (LRP-1) on pericytes and suppress
the levels of a pro-inflammatory cytokine cyclophilin A (CypA). ApoE4
exhibits weak binding to LRP-1 resulting in pathologic elevations in
CypA protein levels, which, in turn, increases nuclear translocation of

the pro-inflammatory transcription factor nuclear factor-κB (NF-κB), and
upregulation of pericyte matrix metalloproteinase-9 (MMP-9). Secretion
and activation of MMP-9 degrades endothelial tight and adherens junc-
tion proteins leading to disruption of the BBB. Pathologic elevations of
MMP-9 and a disrupted BBB lead to capillary loss and hypoperfusion.
Vascular injury may then lead to neuronal dysfunction and degeneration.
Figure modified from Bell et al (15).
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transgenic models and individuals carrying APOE4, a major
genetic risk factor for AD (15, 61).

As shown in transgenic models of pericyte deficiency and AD,
pericytes may contribute to disease pathogenesis through both
Aβ-independent pathway and by altering Aβ metabolism and
clearance. Both pathways may act synergistically after disease
onset to amplify microvascular degeneration, causing neuronal
dysfunction and degeneration. Whether pericyte injury and
degeneration represents a common downstream pathway for
neurodegenerative changes in AD has yet to be explored by using
models with vascular risk factors alone (eg, hypertension, diabe-
tes, dyslipidemia, homocysteinemia and pro-coagulant profile)
and/or in combination with models of Aβ and tau pathology. It
would also be interesting to investigate whether pericytes play a
role in the metabolism and clearance of other proteinaceous mate-
rial implicated in the pathogenesis of other neurodegenerative

diseases including Parkinson’s disease (eg, α-synuclein), prion
disease and/or ALS (eg, superoxide dismutase).

Preliminary studies have supported that pericytes may be thera-
peutically targeted to stabilize peripheral vascular lesions (94).
Therapies focused on CNS pericytes have yet to be developed
experimentally and tested for chronic neurodegenerative disease
and/or brain vascular lesions. Initial attempts have been made by
showing successfully that either genetic or pharmacologic inhibi-
tion of the pro-inflammatory CypA pathway in brain pericytes in
rescues both the vascular and the neuronal phenotype in APOE4
transgenic mice (15). Future studies are needed, however, to extend
these findings to humans with APOE4 genetic risk. Similarly, more
work is needed to identify other key molecular players and pathways
mediating aberrant signal transduction between pericytes, endo-
thelial cells, astrocytes and neurons within the NVU in sporadic and
inherited AD that could possibly represent new therapeutic targets
to control pericyte degeneration in dementia and slow vascular and
neuronal degeneration. Only then may pericyte-targeted therapies
find broader applications for neurological disorders and lead to the
development of new neurovascular medicine.
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